119 research outputs found

    Fine temporal structure of neural synchronization

    Get PDF
    poster abstractWhile neural synchronization is widely observed in neuroscience, neural oscillations are rarely in perfect synchrony and go in and out of phase in time. Since this synchrony is not perfect, the same synchrony strength may be achieved with markedly different temporal patterns of activity (roughly speaking oscillations may go out of the phase-locked state for many short episodes or few long episodes). Provided that there is some average level of phase-locking is present, one can follow oscillations from cycle to cycle and to observe if the phase difference is close to the preferred phase lag or not. Here we study neural oscillations recorded by EEG in alpha and beta frequency bands in a large sample of healthy human subjects at rest and during the execution of a simple motor task. While the phase-locking strength depends on many factors, dynamics of synchrony has a very specific temporal pattern: synchronous states are interrupted by frequent, but short desynchronization episodes. The probability for a desynchronization episode to occur decreased with its duration. The modes and medians of distributions of desynchronization durations were always just one cycle of oscillations. Similar temporal patterning of synchrony in different brain areas in different states may suggest that i) this type of patterning is a generic phenomenon in the brain, ii) it may have some functional advantages for oscillating neural networks receiving, processing, and transmitting information, iii) it may be grounded in some general properties of neuronal networks calling for the development of appropriate nonlinear dynamical theory. To further investigate these conjectures we numerically studied a system of coupled simple neuronal models (of Morris-Lecar type) and showed that coupled neural oscillators exhibiting short desynchronizations require smaller values of synaptic connections between them of weaker common synaptic input to induce specified levels of synchrony strength than oscillators of the same frequency exhibiting more prolong desynchronizations. The results may suggests that whenever a (partially) synchronous cell assembly must be formed to facilitate some function, short desynchronization dynamics may allow for efficient formation and break-up of such an assembly

    Phase-matching of multiple-cavity detectors for dark matter axion search

    Full text link
    Conventional axion dark matter search experiments employ cylindrical microwave cavities immersed in a solenoidal magnetic field. Exploring higher frequency regions requires smaller size cavities as the TM010 resonant frequencies scale inversely with cavity radius. One intuitive way to make efficient use of a given magnet volume, and thereby to increase the experimental sensitivity, is to bundle multiple cavities together and combine their individual outputs ensuring phase-matching of the coherent axion signal. We perform an extensive study for realistic design of a phase-matching mechanism for multiple-cavity systems and demonstrate its experimental feasibility using a double-cavity system.Comment: 5 pages, 2 figures, 1 tabl

    Concept of multiple-cell cavity for axion dark matter search

    Full text link
    In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is considered to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.Comment: 8 pages, 11 figure

    Mathematical model of subthalamic nucleus neuron - characteristic activity patterns and bifurcation analysis

    Get PDF
    The subthalamic nucleus (STN) has an important role in the pathophysiology of the basal ganglia in Parkinson's disease. The ability of STN cells to generate bursting rhythms under either transient or sustained hyperpolarization may underlie the excessively synchronous beta rhythms observed in Parkinson's disease. In this study, we developed a conductance-based single compartment model of an STN neuron, which is able to generate characteristic activity patterns observed in experiments including hyperpolarization-induced bursts and post-inhibitory rebound bursts. This study focused on the role of three currents in rhythm generation: T-type calcium (CaT) current, L-type calcium (CaL) current, and hyperpolarization-activated cyclic nucleotide-gated (HCN) current. To investigate the effects of these currents in rhythm generation, we performed a bifurcation analysis using slow variables in these currents. Bifurcation analysis showed that the HCN current promotes single-spike activity patterns rather than bursting in agreement with experimental results. It also showed that the CaT current is necessary for characteristic bursting activity patterns. In particular, the CaT current enables STN neurons to generate these activity patterns under hyperpolarizing stimuli. The CaL current enriches and reinforces these characteristic activity patterns. In hyperpolarization-induced bursts or post-inhibitory rebound bursts, the CaL current allows STN neurons to generate long bursting patterns. Thus, bifurcation analysis explained the synergistic interaction of the CaT and CaL currents, which enables STN neurons to respond to hyperpolarizing stimuli in a salient way. The results of this study implicate the importance of CaT and CaL currents in the pathophysiology of the basal ganglia in Parkinson's disease
    • …
    corecore